
eBook

Configuration as
Code: A guide to
the approach and
benefits

Configuration as Code: A guide to the approach and benefits 2

This trend has so far included defining infrastructure,
environments, tests, documentation, and much more as code.
Continuous integration and continuous delivery (CI/CD) tools
are crucial to running automated processes; they take many of
these other "X as code" files and both trigger and configure
tasks based on their contents.

However, CI tools are complex in themselves. If a team is
responsible for configuring them manually or maintaining
long-running CI servers, they are likely to encounter challenges
as demands on their usage scale. Switching the configuration of
CI/CD to code alongside other "X as code" efforts helps create
consistent, reproducible, and reliable processes and components
across an entire application stack, giving teams the ability to
scale when and as much as needed.

This practice, which is aptly named Configuration as Code,
or CasC, is tool-agnostic and clarifies the management of Jenkins®
instances by capturing their configurations in human-readable,
declarative configuration files. Managers can then maintain
these files as first-class revision-controlled artifacts that they
can easily apply back to controllers if a configuration fails,
saving everyone time.

Other key benefits of CasC
for Jenkins users include:

• Prevention of configuration drift
• Easily auditable changes
• Automatically reproducible Jenkins instances

All of this means your teams spend less time
creating, maintaining, and debugging integration
infrastructure and more time on application
code that adds value to your business.

Read on to learn more about the CasC
approach and the benefits of scale,
governance, and autonomy it can
bring to development teams.

The push for "X as code" has moved many aspects
of the software lifecycle to standardized text files.

Considerations for
starting with CasC

Configuration as Code: A guide to the approach and benefits 3

For a full
walkthrough of

getting started with
CasC, see our

documentation.

Switching to CasC involves rethinking your current CI workflow
—from pipelines to plugins to security and everything in between—as
a series of requirements. Although the implementation details of using
CasC vary depending on the CI tools, infrastructure, and processes
you use, there are some common questions to consider.

What authentication and security information does the configuration need?
These might be details to ensure the requester is permitted to run CI
processes, details for the provider that runs the CI, as well as details from
other third-party services needed for access—for example, version control.

What about the system resources a CI process needs to run tasks,
 such as the amount of memory, CPU, and disk space? Do you want to
run tasks on bare metal servers, virtual machines, or Kubernetes clusters?

Using CasC means you can break out of using one centralized CI server
and, instead, use short-running processes. This is possibly the biggest
impact of switching to CasC, as you can stop thinking of one multipurpose
service and create discrete, task-oriented processes. As you think through
how to represent your current setups and workflows as CasC, consider
what you're missing and have needed in the past. With CasC, you can
represent all the potential CI setups you need to reach business goals.

https://docs.cloudbees.com/docs/cloudbees-ci/latest/casc-controller/

5 key software
delivery benefits
of CasC

Configuration via UI enforces a form of standardization.
Yet with dozens of features, plugins, and screens
contributing to hundreds of options, it's all too easy
for a user to become overwhelmed and select an
incorrect or different option accidentally. An incorrect
configuration option can range from an inconvenience
to a security or large-scale customer-facing problem.

Using a UI to configure a CI can also result in
configuration drift. Even if you switch to CasC, if
others continue to use the UI, then the configuration
differs from the desired state, and it becomes difficult
to know which value is correct.

Defining that configuration as code instead results
in something you can rely on, as its values will always
create a Jenkins instance configured the way you
expect. Although understanding the depths and details
of configuration files has a learning curve, there are
standard formats and approaches in the industry
that are commonly used.

This standardization means that a developer
who has previously followed CasC practices (or
something similar) can understand most of the
principles of a configuration file with a new
project or company. Even if a new project or
company uses different CI tools or providers,
it's likely the developer can understand what
tasks the configuration is supposed to run
and how they can implement it.

Configuration as Code: A guide to the approach and benefits 5

Using a UI to
configure a CI
can also result in
configuration
drift.

1. Standardization

Configuration as Code: A guide to the approach and benefits

A standardized and consistent format for
configuration files helps reduce the risk of
configuration errors to a large degree. For further
reassurance, another advantage of using text
formats is the ability to check and test their
contents. Certain tools, such as linters, check code
and configuration files and make recommendations
on errors, warnings, and best practices. You can
create test CI processes to ensure your
configuration changes are correct and that
everything will run as expected before potentially
wasting team members' time on deploying
production code.

Using a standardized format means that developers
can write configuration files with the tools they are
happiest using, and take advantage of the variety of
customization and functionality they offer. These
may include some of the aforementioned linting and
testing tools, meaning that errors and best practices
are easier to find and fix as early as possible.

2. Reliability

6

Configuration as Code: A guide to the approach and benefits 7

Reusability means making configuration as
applicable to as many situations and uses as
possible so that it isn't useful to only one specific
function or use case.

Using environment variables and templating is
the first step to making CasC reusable. These are
variables set when triggering the CI process, and
they are passed by commands themselves or
detected from the environment the command
runs in. An environment variable can determine
the code to clone into a CI instance, the branch
to checkout, the directory to clone into, and
many other factors. Variables and templates are
one way to allow different developers with
different access rights to use the same CasC and
trigger similar but subtly different CI processes.

A CI process exists to run tasks, so any CasC
definition needs to tell it where to find those
tasks. Again, through the use of variables, those

3. Reusability and flexibility

tasks can change, allowing for the
triggering of different tasks based
on the environment.

Beyond internal developer flexibility,
you can leverage some of the same
principles to configure CI processes
for different releases—for example,
releasing different software versions
to different customers or regions.
This is useful in larger-scale testing
instances, but also if you need to
release different versions for different
cultural or regulatory purposes.

You can typically extend CasC with
plugins that add functionality and
configuration to CI capabilities. These
could be additional version control
providers, notification services, or
authentication providers.

Configuration as Code: A guide to the approach and benefits 8

Versioning CasC makes it easier for team members
to collaborate and configure services for the many
automated tasks of software development. Teams
and individual members can contribute to the parts of
the configuration they're responsible for with minimal
impact on others. As members propose changes, they
can see them in the context of existing configuration
and discuss suggestions and ideas around those
changes. This discussion and visibility are not possible
when configuring with a UI or with a long-running CI
server that few people have access to. After
discussing the changes, you can test the proposed
changes' functionality and impact by using branches
in the repository.

You can keep configuration in its own repository, or
you can keep configuration changes located in the
same code repositories as application code and in
line with product and code changes. Keeping it in
the same location means you can tie everything to a
specific version number or release of application code.

Versioning offers an audit trail to see who
contributed what and when to the configuration.
This audit trail is useful for identifying issues or
changes to performance, but also for regulatory
reasons. This audit trail helps recognize
configuration drift and identify the discussion
and decision behind a particular change.

If a team member or customer notices a problem,
versioning means you can roll back changes to
previous states and reconfigure systems to a
previously working state in minutes.

Most version control providers integrate with
hundreds of other tools. This means you can
connect configuration to other services and
processes, triggering other manual or automated
steps during collaboration on the CasC, or when
creating an infrastructure based on it—for example,
checking for certain standards in the configuration
files or triggering notification services.

4. Versioning for collaboration and traceability

Configuration as Code: A guide to the approach and benefits 9

Reproducible CI configuration managed from a
distributed but centrally managed source
(version control) makes it easier to onboard new
employees and reassign them to different
projects. Many hours are lost with new hires
asking questions about where to find the
resources they need in order to work. If instead,
you can direct them to one source of knowledge
with a handful of commands, they can start
work much faster.

Using CasC removes the need for centrally
managed and running CI services that only a few
team members have access to. If that fails or has
problems, team members can no longer run CI
jobs and are blocked from working. A similar
situation can occur if a particular CI task
consumes compute resources. If you only have a
handful of dedicated instances, they block other
team members' progress. But, if you spin them
up dynamically as requested, you reduce this

risk. The reproducible nature of CasC means
that you can work around other unforeseen
hits to productivity. If you run CI processes
on one provider and they experience
downtime, you can switch to another. If you
need to run CI processes in another region
for data privacy or regulatory reasons, you
can. If one provider changes its methods for
charging and another is more cost-effective,
switching is a matter of changing the
configuration code. If those requirements
change, you can switch again, each time
with minimal impact on team members.

5. Team and infrastructure scalability

Configuration as Code: A guide to the approach and benefits 10

CasC gives development teams the power to spin
up CI processes when they need them and in the
configurations required for specific projects or
tasks. CasC also reduces the need for specialized
DevOps functions to keep long-running CI servers
functioning efficiently, and "looking after them"
CI becomes a series of ephemeral processes.

As you add new teams and products, it's much
easier to create the new configuration you need
with CasC. Copy an existing and similar file, make
changes, and you'll have the required configuration
relatively quickly. In some cases, if you make smart
use of the environment and other variables when
creating the configuration, you may not even
need to duplicate the existing configuration.

With CasC, not only can you help mitigate
configuration drift, but differences in
configuration values become a feature you
can explore and experiment with.

Configuration as Code: A guide to the approach and benefits 11

In the current market, it's hard to recruit and keep quality developers
with production-level experience. One area where you can improve
the experience for developers you already employ is with internal
productivity. Using practices such as CasC keeps developers engaged as
they can focus on the work they want to do—and the work that will bring
the most value and innovation to your customers—instead of maintaining
integration tools or negotiating with DevOps teams to resolve CI issues.

Configuration as code helps reduce the amount of time spent on
configuring, maintaining, and debugging CI infrastructure, and it enables
DevOps teams to scale alongside the business without worrying about
the manual management of hundreds or even thousands of Jenkins
controllers. At the same time, it helps developers test new features,
experiment with code changes freely, and leverage flexible plugins
without burdening managers with complicated maintenance.

Simply put, CasC puts the power to run CI processes into the
hands of the developers who rely on it the most—in turn, giving
businesses the automation capacity and flexibility they need to
deliver software when they and their customers need it.

Improving developer
productivity and
delivery velocity

Learn how
CloudBees CI can
supercharge your
growing software
delivery engine.

https://www.youtube.com/watch?v=zB5G0rNHh-Y&ab_channel=CloudBeesTV
https://www.cloudbees.com/products/continuous-integration

CloudBees, Inc., 4 North 2nd Street, Suite 1270 San José, CA 95113 United States
www.cloudbees.com • info@cloudbees.com

2022 CloudBees, Inc., CloudBees and the Infinity logo are registered trademarks of CloudBees, Inc.
in the United States and may be registered in other countries. Other products or brand names may

be trademarks or registered trademarks of CloudBees, Inc. or their respective holders.

Jenkins® is a registered trademark of LF Charities Inc.

